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Abstract

Amazon Mechanical Turk (AMT) is an online crowdsourcing service where anonymous online workers complete web-based
tasks for small sums of money. The service has attracted attention from experimental psychologists interested in gathering
human subject data more efficiently. However, relative to traditional laboratory studies, many aspects of the testing
environment are not under the experimenter’s control. In this paper, we attempt to empirically evaluate the fidelity of the
AMT system for use in cognitive behavioral experiments. These types of experiment differ from simple surveys in that they
require multiple trials, sustained attention from participants, comprehension of complex instructions, and millisecond
accuracy for response recording and stimulus presentation. We replicate a diverse body of tasks from experimental
psychology including the Stroop, Switching, Flanker, Simon, Posner Cuing, attentional blink, subliminal priming, and
category learning tasks using participants recruited using AMT. While most of replications were qualitatively successful and
validated the approach of collecting data anonymously online using a web-browser, others revealed disparity between
laboratory results and online results. A number of important lessons were encountered in the process of conducting these
replications that should be of value to other researchers.
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Introduction

One challenging aspect of experimental psychology research is

the constant struggle for data. Typically, researchers depend on

university undergraduates who participate in studies in exchange

for experience, course credit, or money. Research progress

depends on the ebb and flow of the semester. As a result, it can

take weeks, months, or even years to conduct a large behavioral

study. This issue is even more salient for researchers at smaller

universities.

One appealing solution is to collect behavioral data over the

Internet. In theory, online experimentation would allow research-

ers to access to a large and diverse pool of potential subjects

worldwide, using automated replicable techniques free of unin-

tended experimenter effects. However, the main obstacle to

conducting Internet-based research is finding people who are

willing to participate and compensating them.

Recently, a number of online crowdsourcing services have been

developed which connect individuals willing to perform online

tasks with other individuals willing to pay for work to be done.

Perhaps the most popular system is Amazon’s Mechanical Turk

(AMT). AMT is useful for behavioral researchers because it

handles recruitment and payment in a fairly automatic way. Most

importantly, there are a large number of people who use AMT

making it a great way to advertise and distribute studies (over

100,000 active users in 2007 [1]).

There are a number of recent summaries about using AMT for

research [2]. In addition, the service has been validated as a tool

for conducting survey research [3,4], one-shot decision-making

research [5,6], collective behavior experiments [7,8], for norming

stimuli, and conducting behavioral linguistics experiments [9,10].

However, less is known about the viability of conducting

behavioral experiments typical of those used in cognitive science

and cognitive psychology. Such studies are unique in that they

typically involve multi-trial designs, sustained attention on the part

of participants, millisecond timing for response recording and

stimulus presentation, and relatively complex instructions. These

features present two key challenges for online data collection. First,

there are technical challenges in programming web-based

experiment protocols and then ensuring the browser systems of

the participant and experimenter support the same features.

Second, experiments where memory and timing are important are

likely more sensitive to incidental aspects of the testing environ-

ment that are difficult to control online (e.g., presence of

distractions, problems with display, pausing for long periods in

the middle of the task, and misreading or misunderstanding of

instructions).

The aim of the present paper is to validate AMT as a tool for

behavioral cognitive research, with a specific focus on complex

multi-trial designs. We focus on AMT simply because it is the most

popular system currently available and the one most researchers

would likely consider. If the data obtained from AMT can

replicate classic findings in the field with reasonable fidelity, it will

validate the potential of the service for use in cognitive behavioral

research. In this sense our study joins a number of recent articles

exploring the relationship between data collected online and in the
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lab [11,3]. However, unlike existing work, in the present study we

focus on qualitative replication of theoretically significant findings

rather than on comparisons of the performance variance or mean

performance of lab and online participants (e.g., [11]). The

standard of qualitative replication (i.e., the ability to detect reliable

differences as the result of an established and widely accepted

experimental manipulation) is likely the one of most interest to

researchers and has the greatest importance for the field.

In the present study we attempted to replicate influential

findings from several classic cognitive phenomena from the

attention, performance, and learning literatures. The replication

studies were chosen to represent and validate a broad range of

multi-trial designs that require millisecond control over response

collection and stimulus presentation, as well as designs that require

complex decision making and where task instructions are critically

important. To foreshadow, our results suggest that data collected

online using AMT closely resemble data collected in the lab under

more controlled situations. However, for certain types of

experiments the alignment between laboratory results and online

results showed greater disparity. In the conclusion of the paper we

suggest some general lessons we obtained which may help inform

other researchers considering using online data in their work.

AMT Basics
There are a number of in-depth overviews of using AMT to

conduct behavioral experiments [4,2,6]. In brief, the service allows

individuals (known as requesters) to post human intelligence tasks (HITs)

that other individuals (known as workers) can complete for small

sums of money. Each HIT is a small unit of work that is typically

completed in the worker’s web browser. HITs can be composed of

assignments which allow multiple workers to complete the same

HIT. Common HITs include providing keywords for the objects

in an image or giving feedback about a website. These tasks

typically require some form of human intelligence, but can be

completed by almost anyone in a few minutes. In the present case,

we consider a HIT to be a request to participate in an entire

cognitive experiment.

Amazon provides web-based, point-and-click tools for creating

several different kinds of HITs; however none of these tools are

suitable for the control and flexibility necessary for conducting

complex behavioral experiments. As an alternative, Amazon

provides a way for tasks to be completed on an external webserver.

As a result, requesters (in this case, psychologists) need only

program and host an external website that is capable of running

the desired experiment. Any task that can be programmed using

standard web browser technology (e.g., HTML with JavaScript or

Flash) can be used on AMT. Once the external website HIT has

been designed, it must be set up to interface with Amazon’s service

so that workers who accept and complete the task can be paid (see

[2] for details).

Once a HIT is posted to the service it will be available for

workers to complete. Restrictions can be set to limit HIT

completions to workers with unique worker IDs (a unique number

assigned to each worker when they sign up), or to workers of a

certain age or from a certain region. Workers that qualify for the

HIT can view a short task description along with the pay rate, and

choose whether or not to accept the task. A worker clicks an accept

button when they decide to complete the HIT and a submit button

when they have completed the HIT. At any time, the worker can

choose to stop and return the HIT to the requester. This allows

another worker to complete the HIT instead. The requester also

has the option to reject payment for unsatisfactory work. Payment

is usually handled through a credit card and processed through

Amazon’s payments system.

Potential Advantages and Disadvantages of Collecting
Data Online

There are many reasons researchers may be enthusiastic about

collecting behavioral data online [12] using services such as AMT.

First, data can be collected more quickly than in the lab. Second,

since the experimenter never directly meets or interacts with the

anonymous participants, it minimizes the chance that the

experimenter can influence the results. In addition, the code for

such experiments can easily be shared online to other researchers

to facilitate replication with a more or less identical population

sample. Finally, studies have shown that AMT workers are

generally more diverse than undergraduate college students and

are instead representative of the general demographics of the

Internet-using population [13,2,7,14,8].

However, there are a number of limitations facing researchers

running experiments on AMT. First, workers are kept completely

anonymous as part of Amazon’s terms of service making it difficult

to verify demographic information (and people may not truthfully

answer certain questions on demographic surveys). Second, the

computer systems that workers use to complete HITs should be

assumed to vary widely and the error in measuring reaction time

data and ensuring precise timing of stimulus displays is unknown.

Third, there is a complete lack of environmental control. For

example, workers could be simultaneously watching TV or

cooking breakfast while performing the task. This could have

negative consequences, particularly on tasks where subject must

learn or memorize something from one trial to the next. Finally,

although the service is assumed to involve human workers there is

a possibility of non-human workers (i.e., bots) that may try to

subvert the design in order to obtain payment. Together, these

concerns could limit the usefulness of service for conducting

behavioral experiments.

One way to address these issues is technical (e.g., introducing

screening questions that cannot be reasonably answered by bots,

requiring trials to be completed quickly and accurately, etc…).

However, an important validation of the system may be obtained

through empirical analysis. If the system can be used to replicate

well-known and widely replicated laboratory findings from

cognitive psychology, researchers can pursue novel scientific

questions with greater confidence (Tthis is the standard that we

believe most researchers would intuitively use to judge the

usefulness of such systems.) This is the approach we have taken

in the experiments that follow.

Empirical Validation through Replication
The purpose of the present experiments is to validate AMT as a

tool for running multi-trial designs that are common in behavioral

cognitive research. The experiments were chosen first to give a

broad, representative sample of the kinds of tasks that are typically

used in the field, and second, to satisfy three main validation

criteria that would be important to many researchers. Three series

of experiments were run: The first to validate multi-trial designs

requiring millisecond control over response collection; the second

to validate multi-trial designs requiring millisecond control over

stimulus presentation; and the third to validate other aspects of

multi-trial designs, with a focus on experiments where instructional

manipulations are important. The experiments were all conducted

on AMT in a joint effort across the labs of the first and last author.

As such, there are minor differences in the general experimental

protocols (e.g., method of consent, subject payment) employed in

the coding of the web-based experiments. The experiments in the

first and second series were coded together by the first author, and

the experiments in the third series were coded together by the
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second and last author. The series of experiments are reported in

turn below.

Ethics Statement
The experiments reported in Section 1 and Section 2 were

approved and in compliance with the Brooklyn College Institu-

tional Review Board. The experiments reported in Section 3 were

approved and in compliance with the New York University

Institutional Review Board.

Section 1: Reaction Time Experiments

Many cognitive tasks require millisecond timing for response

collection. Reaction time measurements are inherently noisy,

people are sometimes fast and sometimes slow, and researchers

commonly employ multi-trial designs to reduce measurement

error. Measurement error is also reduced in lab-based research

using software and hardware that can guarantee millisecond

precision. This guarantee is likely impossible to duplicate inside a

web browser.

JavaScript running in modern web browsers has millisecond

timing capability and this allows for some control over stimulus

presentation rates and response recording [15]. However, even

though JavaScript records millisecond timestamps, timing vari-

ability for the sampling rate on any given subject’s computer is

unknown. Keyboards have different sampling rates monitors have

different refresh rates, and different web browsers running on

different computers have highly variable presentation lags.

Nevertheless, these timing errors may be relatively small and

almost certainly random across subjects [16]. Typically, partici-

pants’ response times are considerably more variable than their

computer systems’ timing errors. Indeed, prior work using Flash-

based programming to collect online data have successfully

replicated simple binary-choice RT effects [17] and task-switching

effects [18].

Continuing in this vein to validate AMT as a tool to conduct

reaction time research, several classic reaction time effects were

replicated. The replications included Stroop, task-switching,

Eriksen flanker, Simon, and Posner cuing tasks. The Posner cuing

task is included in Section 2 as it also requires precise control over

stimulus presentation.

Unless otherwise noted, the experiments involve short 5 min

tasks involving approximately 100 trials. Each experiment was

loaded as a single HIT to Amazon Turk with 60 available

assignments. The experiments reported here have varying

numbers of participants, as it is common for some proportion of

the requested HITs to be returned incomplete. If a specific

number of participants is required it would be easy to request

enough HITs to ensure the required number of successful

completions. Equal numbers of subjects per condition were not

obtained to give the reader a better sense of subject attrition and

HIT completion rate. For all experiments in section one,

participants electronically signed consent forms. The Brooklyn

College Institutional Review Board approved the study designs.

Experiment 1: Stroop

The Stroop task is a classic multi-trial procedure involving ink-

color identification of congruent (the word blue in blue) or

incongruent (blue in red) word-color pairs [19,20]. There are many

variants of the response mode in the identification task ranging

from vocal naming, pressing arbitrary keys for assigned colors, and

typing out the required response. All these variants produce faster

response times for congruent than incongruent items, and this

difference is termed the Stroop effect. The present replication created

Stroop stimuli using the colors red, green, blue, and yellow. The

design employed a typing identification response, which is known

to produce large Stroop effects [21]. An equal proportion of

congruent and incongruent trials were presented over the course of

96 trials.

Methods
Participants. One HIT with 60 assignments was loaded onto

AMT. Forty unique workers completed all 96 trials. Prior to the

experiment workers verified their typing ability by copying a

sentence as quickly and accurately as possible. If the sentence was

typed faster than 40 words/min, the worker continued to the main

task. Mean words/min was 53. Demographic information was not

collected and workers remained completely anonymous. Workers

were paid $0.10 to complete the task, which lasted approximately

5 min.

Apparatus, Stimuli & Design. The experiment was pre-

sented to workers as an HTML webpage with task flow controlled

by JavaScript code running locally in each worker’s web browser.

Stroop trials were constructed from pairing the colors red,

green, blue, and yellow with their respective English words,

resulting in four possible congruent and 12 incongruent items. The

words were presented in 50-pt font in the center of the webpage.

The background color of the page was black. There were a total of

96 trials with 48 congruent and 48 incongruent items.

Procedure. Workers on AMT found the experiment by

browsing for HITs on Amazon’s website. When viewing the

experiment ‘‘ad’’ workers were presented with a webpage

containing task instructions and informed consent. Workers could

view example trials so they could decide whether the task was of

interest before accepting the HIT by pressing a button. Next, they

viewed a verification screen and were asked to type the sentence as

quickly and accurately as possible (described above).

The main task consisted of a resizable webpage with a black

background. The top left corner contained a small button with the

label, ‘‘submit when all trials completed.’’ Pressing this button sent

the collected data to Amazon and confirmed with Amazon that

the worker completed the task. Below the submit button was an

instruction button that would display task instructions if a

reminder was necessary. Below this was a trial counter showing

the current trial number and number left to be completed.

Workers could press the submit button at any time during the

experiment.

Each trial began with a central fixation cross for 500 ms and a

blank interval for 500 ms followed immediately by a Stroop item

that remained on screen until responses were submitted. Subjects

typed the name of the ink-color in full then pressed the spacebar to

submit their response. The backspace key was disabled and

subjects were prevented from correcting their responses. Typed

responses were echoed on screen as feedback directly below the

target stimulus in white 50-pt font. Spacebar presses cleared the

Stroop item and typed response from the screen and triggered

presentation of accuracy feedback in the form of the words

‘‘correct’’ or ‘‘incorrect’’, which were presented above the target

stimulus location in white 50-pt font. This feedback was presented

on screen for 500 ms and was removed at the beginning of the

next trial, which was automatically triggered.

Results and Discussion
Reaction times (RT) were defined as the time between the onset

of the Stroop stimulus and the first keystroke to type the color

name. Only correct trials where subjects typed the entire color

name correctly were analyzed. RTs for each subject in each
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condition were submitted to an outlier analysis [22], which

removed 3% of the observations. Mean RTs and error rates for

each subject in each condition were submitted to separate one-way

repeated measures ANOVAs with congruency (congruent vs.

incongruent) as the single factor. Figure 1a shows mean RTs and

error rates for each condition, and Figure 1b shows individual

subject variability with individual Stroop difference scores plotted

against mean RTs.

RTs were significantly faster for congruent (859 ms) than

incongruent (1,152 ms) trials, F(1,39) = 179.80, MSE = 11461.39,

p,.001, g2
p = .82, showing a large (293 ms) Stroop effect. Error

rates were low overall and the smaller error rates for congruent

(.045) than incongruent items (.059) was marginally significant,

F(1,39) = 3.51, MSE = 0.0013, p,.068, g2
p = .08.

These results replicate the classic Stroop effect. Observed RT

values were consistent with Logan & Zbrodoff [21], who reported

809 ms for congruent and 1,023 ms for incongruent items. Error

rates were low, showing that participants were capable of

understanding and performing the task according to the instruc-

tions. This provides a first demonstration that classic attention and

performance effects can be obtained using Amazon Turk.

Experiment 2: Task- witching osts

Task performance is generally faster and more accurate when

the same task is repeated over trials and slower and more error

prone when task demands alternate over trials. This effect is

termed the task-switch cost [23,24,25]. We tested for switching

costs on AMT using a standard procedure. Subjects were given

one of two task cues along with a target digit (1–4, or 6–9): The

task cue ‘‘ODD/EVEN’’ instructed subjects to judge whether the

target was odd or even, while the task cue ‘‘SMALL/BIG’’

instructed subjects to judge whether the target was smaller or

bigger than five. The two tasks alternated randomly throughout

the experiment. The key dependent measure was RT as a function

of if the task switched or repeated from the previous trial.

Methods
Participants. One HIT with 60 assignments was submitted

to AMT.

Fifty-five unique workers completed all 96 trials. Demographic

information was not collected and workers remained completely

anonymous. Workers were paid $0.10 to complete the task, which

lasted approximately 5 min.

Apparatus, Stimuli & Design. As in Experiment 1, the

experiment was presented to workers as an HTML webpage with

task flow controlled by JavaScript code running locally in each

worker’s web browser.

Target items were the integer numbers ‘1’ through ‘9’ with the

exception of ‘5’. Targets and task cues were presented in white, 50-

pt font, on a black background. The odd and even responses were

given using the ‘A’ and ‘S’ keys, respectively. The small and big

responses were given using the ‘K’ and ‘L’ keys, respectively.

Feedback for correct and incorrect trials was presented in white

using 50 pt font. There were a total of 96 trials, with 50% odd/

even and small/big task cues. Which task was presented on a given

trial was randomly determined for each subject.

Procedure. The same general web-based procedure used in

Experiment 1 was employed here. Each trial began with a fixation

point displayed for 500 ms, followed immediately by a task-cue

and target stimulus that remained on the screen until the response.

Cues and targets were presented centrally, with the cue presented

directly above the target. Subjects were instructed to make their

responses as quickly and accurately as possible. At the time of the

response, cues and targets were immediately replaced with

feedback indicating whether the response was correct or incorrect.

The next trial was triggered automatically with a delay of 500 ms.

Results & Discussion
The same outlier analyses applied in Experiment 1 resulted in

the removal of 3% of the data from each condition. Mean RTs

and error rates for each subject in each condition were submitted

to separate one-way repeated measures ANOVAs with switching

(repeat vs. switch) as the single factor. Figure 2a shows mean RTs

and error rates for each condition, Figure 2b shows individual

subject switch costs plotted as a function of mean RT.

RTs were significantly faster for repeat (1282 ms) than switch

(1507 ms) trials, F(1,54) = 61.56, MSE = 22556.99, p,.001,

g2
p = .53, showing large switch-costs (225 ms). Error rates were

Figure 1. Congruent and Incongruent RTs, Error Rates and Individual Stroop Scores by Mean RT. A. Mean RTs and error rates for
congruent and incongruent Stroop items with standard error bars. B. Individual subject Stroop difference scores (incongruent-congruent) plotted as a
function of individual subject mean RTs.
doi:10.1371/journal.pone.0057410.g001
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low overall and significantly lower for repeat (.1) than switch trials

(.12), F(1,54) = 9.77, MSE = .0013, p,.003, g2
p = .15.

Task-switch costs were observed providing another demonstra-

tion that AMT can replicate classic RT effects in the attention

domain. During the review process we learned that this is not the

first report of using the web to measure task-switch costs. Reimers

& Maylor [18] conducted a large (n = 5,271) online study (but not

on AMT) using a Flash-based website to measure task-switching

performance across the ages 10–66. Our mean switch costs, RTs,

and error rates fall within their reported ranges, showing

qualitative replication of the web-based approach across different

online recruiting approaches and experimental apparatus.

Experiment 3: Flanker

The Flanker task [26,27] measures participants’ spatial atten-

tion in a task requiring them to select relevant from irrelevant

information. Flanker stimuli are typically rows of letters. Subjects

are instructed to identify the centrally presented target as quickly

and accurately as possible. Compatible (e.g., hhhhh) or incom-

patible (e.g., ffhff) distractors flank a central target. Correct

responses thus require the subject to ignore the distractors and

respond only based on the target. Typically, the flanking letters are

among the possible targets, and RTs are faster for compatible than

incompatible trials. This is often taken to imply that the distractors

are being processed to some degree even when they should be

ignored.

Methods
Participants. One HIT with 60 assignments was submitted

to AMT. Fifty-two unique workers completed all 96 trials.

Demographic information was not collected and workers re-

mained completely anonymous. Workers were paid $0.10 to

complete the task which lasted approximately 5 min.

Apparatus, Stimuli & Design. The experiment was again

presented to workers as an HTML webpage with task flow

controlled by JavaScript code running locally in each worker’s web

browser.

Flanker items were constructed from the lowercase letters ‘f’ and

‘h’. There were two compatible items (‘fffff’, ‘hhhhh’) and two

incompatible trials (‘ffhff’, ‘hhfhh’). The keyboard responses ‘F’

and ‘H’ were used to identify the targets. The display parameters

were the same as the Stroop experiment. Flanker stimuli were

presented in white on a black webpage background in 50-pt font.

Feedback for correct and incorrect trials was presented in white

using 50-pt font. There were a total of 100 trials, with 50%

compatible and incompatible items. On each trial a random

procedure was used to determine which of the four items was

presented, and the random trial sequence was different for each

subject.

Procedure. The same general web-based procedure used in

Experiments 1 and 2 was employed here. Each trial began with a

fixation point displayed for 500 ms, followed immediately by a

Flanker stimulus that remained onscreen until the response.

Subjects made their response by pressing the ‘F’ or ‘H’ key as

quickly and accurately as possible. This button press immediately

replaced the Flanker stimulus with feedback indicating whether

the response was correct or incorrect. The next trial was triggered

automatically with a delay of 500 ms.

Results & Discussion
The same outlier analyses applied in Experiments 1 and 2

resulted in removal 3% of the data from each condition. Mean

RTs and error rates for each subject in each condition were

submitted to separate one-way repeated measures ANOVAs with

compatibility (compatible vs. incompatible) as the single factor.

Figure 3A shows mean RTs and error rates for each condition,

and Figure 3B shows individual subject flanker difference scores

plotted as a function of mean RT.

RTs were significantly faster for compatible (612 ms) than

incompatible (682 ms) trials, F(1,51) = 65.78, MSE = 1954.10,

p,.001, g2
p = .56, showing a typical Flanker effect. Error rates

were low overall and significantly lower for compatible (.016) than

incompatible (.033) trials, F(1,51) = 10.33, MSE = .00069, p,.003

g2
p = .17.

Overall, the Flanker effect was replicated. RTs and error rates

appear within in the range reported in laboratory studies. For

example, using a related procedure Wendt & Kiesel [28] found

similar RTs for compatible (604 ms) and incompatible trials

(647 ms). Across experiments, the Stroop, task-switching and

Flanker effects reported involved fairly large RT differences.

Clearly these very strong effects can survive whatever noise is

Figure 2. Repeat and Switch RTs, Error Rates and Individual Switch costs by mean RT. A. Mean RTs and error rates for task repeat and
switch trials with standard error bars. B. Individual subject switch costs (switch-repeat) plotted as a function of individual subject mean RTs.
doi:10.1371/journal.pone.0057410.g002
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inherent to collecting data through AMT. However, a natural

question is whether smaller RT differences can also be detected.

Experiment 4: Simon

The Simon task [29,30] measures spatial compatibility effects in

choice-reaction time. In a typical design targets are presented in

one of two visual locations, and responses are made with a left or

right button press. For example, red targets would be identified

with a left button and green targets with a right button. RTs are

usually faster for visual target presented in a location that is

spatially compatible with the response (e.g., when the red item

occurs on the left side of the screen) than when the target is placed

in a spatially incompatible location (e.g., the red item occurs on the

right side of the screen). Simon effects are typically much smaller

in size than Stroop, Task-switching, and Flanker effects. Thus,

replicating these effects would further validate AMT as tool for

detecting small RT differences.

Methods
Participants. One HIT with 60 assignments was submitted

to AMT. Fifty-eight unique workers completed all 96 trials.

Demographic information was not collected and workers re-

mained completely anonymous. Workers were paid $0.10 to

complete the task, which lasted approximately 5 min.

Apparatus, Stimuli & Design. The experiment was pre-

sented to workers as an HTML webpage with task flow controlled

by JavaScript code running locally in each worker’s web browser.

The display consisted of three placeholder squares 150 px on

each side, placed on the left, center, and right side of the screen.

Placeholders were separated by 170 px. Each placeholder square

was a black-filled square with a white border presented on a black

background. Target items were red and green squares 100 px per

side. Targets could appear in the right or left locations. The

response for the red square was the ‘S’ key located on the left side

of the keyboard, and the response for the green square was the ‘K’

key located on the right side of the keyboard. There were a total of

100 trials, with 50% spatially compatible and incompatible trials.

On each trial the location of the target and the color was randomly

determined, and the random sequence of trials was unique for

each participant.

Procedure. The same general web-based procedure used in

Experiment 1–3 was employed here. Each trial began with a

fixation point displayed for 500 ms, followed immediately by a

target square that remained onscreen until the response. Subjects

were instructed to make their responses as quickly and accurately

as possible. Responses immediately removed the placeholders and

target from the screen and were followed immediately by feedback

indicating whether the response was correct or incorrect. The next

trial was triggered automatically with a delay of 500 ms.

Results & Discussion
The same outlier analyses applied in Experiments 1–3 resulted

in removal 3% of the data from each condition. Mean RTs and

error rates for each subject in each condition were submitted to

separate one-way repeated measures ANOVAs with compatibility

(compatible vs. incompatible) as a factor. Figure 4A shows mean

RTs and error rates for each condition, and Figure 4B shows

individual subject Simon difference scores plotted as a function of

mean RT.

RTs were significantly faster for compatible (556 ms) than

incompatible (603 ms) trials, F(1,57) = 33.55, MSE = 1851.32,

p,.001, g2
p = .37. Error rates were low overall and significantly

lower for compatible (.05) than incompatible (.11) trials,

F(1,57) = 36.32, MSE = .0025, p,.001, g2
p = .39.

The Simon effect was reproduced and was similar to prior

laboratory-based reports. For example, in a first training session

that had six times as many trials, Proctor & Lu (Exp 1) [31]

reported 459 ms for compatible and 481 ms for incompatible

trials. Here, the mean RTs are slightly shorter and Simon effect

smaller than in the AMT replication, and this difference is likely to

due to the limited number of trials involved in the present

experiment.

Section 1: Summary
All of the reaction time tasks chosen for validation purposes

were replicated. In addition, error rates were low overall

suggesting that participants took the task seriously. When the task

required more complex responding, as in the typing version of the

Figure 3. Compatible and Incompatible RTs, Error Rates and Individual Flanker Scores by Mean RT. A. Mean RTs and error rates for
compatible and incompatible flanker items with standard error bars. B. Individual subject flanker scores (incompatible-compatible) plotted as a
function of individual subject mean RTs.
doi:10.1371/journal.pone.0057410.g003
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Stroop task, RTs were a bit longer than in more simple forced

choice tasks. However, this pattern is expected even in the

laboratory. In general, all RT patterns appear to be in the

expected ranges which have been established in more controlled

laboratory settings. Overall, these replications highly recommend

AMT as a tool to conduct multi-trial designs that rely on reaction

time as a dependent measure.

Section 2: Rapid Stimulus Presentation

Many attention, perception, and cognition experiments require

precise millisecond timing for visual stimulus presentation.

Laboratory based research typically employs software and

hardware that guarantees precise control over displays. Web

browsers equipped with Javascript have the capability to show and

hide visual stimuli on the order of milliseconds, however it is

unknown whether stimuli are displayed for the exact programmed

time values on worker’s computers due to the fact that resources

are loaded over a Internet connection. Three attention experi-

ments that required relatively short 10–100 ms stimulus presen-

tations were conducted to determine whether standard effects can

be replicated using contemporary web-browser technology. These

were Posner (or visual) cuing, the attentional blink task, and a

subliminal masked priming procedure. For all experiments in this

section, participants electronically signed consent forms. The

Brooklyn College Institutional Review Board approved the study

designs.

Experiment 5: Visual Cuing & Inhibition of Return

In a visual cuing task, participants are presented with a central

fixation cue and asked to detect or identify a target stimulus

appearing to the left or right of fixation. Prior to target onset the

left or right location is cued by a short and sudden visual percept.

The cuing event is often uninformative such that a cue on the left

could be followed by a target in either the left or right location

with equal probability, and vice versa for cues appearing on the

right side. Visual cuing procedures have produced well-established

patterns of results reflecting aspect of visual attention [32,33].

First, when a detection task is used, RTs tend to be much faster

(,300–400 ms) than those observed in the Stroop and Flanker

task. Second, when there is short delay between cue and the target

(e.g. *; 300 ms) RTs are faster for valid (target appears in cued

location) than invalidly cued (target appears in uncued location).

Third, when the cue-target interval is longer (e.g. *>400 ms) the

cuing effect reverses with RTs faster for invalid than valid trials

(reflecting inhibition of return for attention [33]). Cuing effects are

often relatively small in size. In addition, cue presentation

durations can be very short (e.g., 100 ms), and the delay between

cue and target must be short enough to measure the positive cuing

effect. These task-parameters can easily be programmed in the

web-browser based script, but it is unclear whether the intended

stimulus presentation times will be error-free on the wide

variability of AMT worker computer systems. Replicating visual

cuing effects in the context of a simple detection experiment allows

us to assess the replicability of studies that depend on precise

timing for stimulus presentation.

Methods
Participants. One HIT with 60 assignments was loaded onto

AMT. Fifty unique workers completed all 96 trials. Demographic

information was not collected and workers remained completely

anonymous. Workers were paid $0.10 to complete the task that

lasted approximately 5 min.

Apparatus, Stimuli & Design. The experiment was pre-

sented to workers as an HTML webpage with task flow controlled

by JavaScript code running locally in each worker’s web browser.

The visual display was composed of three squares arranged

horizontally from left-to-right. Each square was 150 px in width

and height. Squares were separated by 170 px. Squares were

depicted as transparent with a white border, and presented on a

black background. The target was a green ‘‘X’’ presented in 40-pt

font. When the ‘‘X’’ appeared it was presented centrally inside the

left or right square. Cues were white filled squares 100 px in width

and height, and appeared centrally inside the left or right squares.

The design involved a 2 (validity: validly cued vs. invalid)64 (Cue-

to-target Onset Asynchrony: 100 ms, 400 ms, 800 ms, 1200 ms)

factorial design.

Procedure. The same screening procedure and webpage

used in Experiments 1–4 was employed here.

Figure 4. Compatible and Incompatible RTs, Error Rates, and Individual Simon Scores by Mean RT. A. Mean RTs and error rates for
compatible and incompatible Simon trials with standard error bars. B. Individual subject Simon scores (incompatible-compatible) plotted as a
function of individual subject mean RTs.
doi:10.1371/journal.pone.0057410.g004
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Each trial began with all three squares presented on screen. The

fixation cross appeared in the central square for 500 ms, followed

immediately by a cue that was presented in the left or right

location. Cue duration was 100 ms. The fixation point remained

onscreen during presentation of the cue. After the cue disappeared

one of four CTOAs (100 ms, 400 ms, 800 ms, or 1,200 ms)

occurred after which the green ‘‘X’’ was presented in the left or

right location. Subjects were instructed to detect the ‘‘X’’ by

pressing the space bar as quickly and accurately as possible. If

subjects’ RTs were slower than 500 ms a warning message was

displayed that read ‘‘respond faster’’. The next trial was triggered

automatically with a delay of 1,000 ms. Subjects pressed the

submit button at the top of the screen after completing the trials.

Results & Discussion
The same outlier analysis used in Experiments 1–4 removed 3%

of trials from each condition. Mean RTs for each subject in each

condition were submitted to a 2 (validity: valid vs. invalid)64

(CTOA: 100 ms, 400 ms, 800 ms, and 1,200 ms) repeated

measures ANOVA. Mean RTs for each condition are displayed

in Figure 5.

The main effect of CTOA was significant, F(3,147) = 57.29,

MSE = 937.35, p,.001, g2
p = .54. Mean RTs were 380, 367, 341,

and 329 ms across the 100, 400, 800, and 1200 ms delays

respectively. This shows expected influences of preparation, with

faster RTs for targets appearing with longer cue-target delays. The

main effect of validity was significant, F(1,49) = 17.24,

MSE = 1148.09, p,.001, g2
p = .26, but was furthered qualified

by the critical validity6CTOA interaction, F(3,147) = 12.95,

MSE = 736.63, p,.001, g2
p = .21. For the 100 ms CTOA

condition, validly cued targets were detected faster (373 ms) than

invalidly cued targets (387 ms), F(1,49) = 5.07, MSE = 1053.69,

p,.028 g2
p = .09, showing a 15 ms positive cuing effect. For the

400, 800, and 1,200 ms CTOA were obtained for the 100 ms

CTOA, and negative cuing effects were obtained for the 400, 800,

and 1,200 ms CTOA conditions, validly cued targets were

detected slower (358 ms) than invalidly cued targets (334 ms),

F(1,49) = 37.34, MSE = 41891.10, p,.001, g2
p = .43, showing

negative cuing effects which are commonly known as inhibition

of return. By comparison, the pattern of mean RTs and cuing

effects are similar to those reported by Lupiáñez et al. in a

laboratory-based study (see their Table 1 [34]).

The fact that visual cuing effects can be replicated using

Amazon Turk shows that even small RT effects (,20 ms) can be

reliably measured despite unknown timing variability in stimulus

presentation and response recording. Our result suggest that this

timing error is small or random and washes out in the averaging

over multiple trials and multiple subjects.

Experiment 6: Attentional link

Visual target detection can be impaired for a second target item

that appears within 100–500 ms of the first target [35,36]. This

effect is termed the attentional blink (AB). Procedures used to

measure the AB involve rapid serial visual presentation (RSVP)

streams (i.e., sequences of visual images) that require millisecond

timing for stimulus presentation control. Typical AB designs

involve identifying a target amongst a series of distractors that are

presented in a RSVP stream. For example, a stream of 10–15

random letters could be presented with short 100 ms durations for

each letter. The first target (T1) letter is a white letter presented

amongst black distractor letters. Additionally, a second target (T2),

in the form of a black X, is sometimes presented after T1. When

T2 is presented its position is varied from immediately after T1

(lag 1), up to any future letter position (lags 2–8). The task involves

identifying T1 and then judging whether T2 was presented. The

AB is measured for trials where T1 was correctly reported. On

these trials, T2 accuracy remains high for lag 1, drops

substantively at lag 2, and gradually improves back to ceiling

across the remaining lags. The AB effect is commonly thought to

reflect attentional processes involved in raising awareness of a

stimulus to a conscious level [36].The present experiment

replicates a version of the attention blink procedure taken from

Klein, Shapiro, & Arnell (Exp 2, [35]).

Methods
Participants. One HIT with 60 assignments was loaded onto

AMT. Fifty-two unique workers completed all 96 trials. Demo-

graphic information was not collected and workers remained

completely anonymous. Workers were paid $0.10 to complete the

task which lasted approximately 5 min.

Figure 5. Visual Cuing: Cued and Uncued Mean RTs as a
function of CSTOA. Mean RTs for cued and uncued trials as a
function of cue-target stimulus onset asynchrony with standard error
bars.
doi:10.1371/journal.pone.0057410.g005

Table 1. The abstract structure of the Shepard, Hovland, and
Jenkins (1961) classification problems.

Classification Category

Stimulus I II III IV V VI

1 1 1 A A B B B B

1 1 2 A A B B B A

1 2 1 A B B B B A

1 2 2 A B A A A B

2 1 1 B B A B A A

2 1 2 B B B A A B

2 2 1 B A A A A B

2 2 2 B A A A B A

Each stimulus can be coded as a binary vector along the three stimulus
dimensions. The problems differ in how the eight items are assigned to the two
categories. The perceptual dimensions (e.g., blue, stripe, border color) were
randomly assigned to the abstract stimulus dimensions for each subject.
doi:10.1371/journal.pone.0057410.t001
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Apparatus, Stimuli & Design. The experiment was pre-

sented to workers as an HTML webpage with task flow controlled

by JavaScript code running locally in each worker’s web browser.

The visual display was composed of a grey square 300 px in

width and height, placed in the center of the webpage on a black

background. Distractor and target letters were presented in the

center of the square in 50-pt font. Distractor letters and the second

target letter T2 (an X) were always presented in black. The first

target letter (T1) was presented in white font.

Letter sequences involved 7–15 pre-target letters and 8 post-

target letters. All letters in a stream were unique and randomly

ordered from trial-to-trial. The white target (T1) always appeared

at the end of the pre-target letter sequence, and the second target

(T2, black X) appeared on 50% of the trials in each of the 8 post-

target letter positions, with equal proportion. There were a total of

80 trials.

Procedure. The same screening procedure and basic web-

page used in Experiments 1–5 was employed here.

Each trial began with a fixation cross presented in black in the

center of the square for 500 ms. Next the entire stream of letters

was presented in series. Each letter was presented for 100 ms and

immediately replaced with the following letter. After the stream

was completed the square and final letter were immediately

blanked. Subjects were cued to identify T1 by pressing the

appropriate key on the keyboard. Next, they were instructed to

press 1 if the X was present and 0 if the X was absent. The next

trial was triggered automatically with a delay of 1,000 ms.

Results & Discussion
Only trials in which T1 was correctly identified were considered

in the analysis. Mean proportion correct for detecting the second

target for in each lag condition was computed for each subject.

Means were submitted to a one-way repeated-measures ANOVA

with lag as the single factor, and are displayed in Figure 6.

There was a significant effect of lag, F(7,357) = 39.12,

MSE = .055, p,.001, g2
p = .43. The figure shows the character-

istic pattern of the AB. Proportion correct was higher for lag 1 (.43)

than lag 2 (.23), F(1,51) = 17.04, MSE = .06, p,.001, g2
p = .25,

which is commonly termed lag 1 sparing. Lag 2 shows the worst

performance, and proportion correct increases monotonically to

lag 8, which shows the highest accuracy (.78).

The hallmark patterns of the AB were replicated. AB

experiments use RSVP presentation techniques and require fast

stimulus presentation rates. In our experiment, only minimal effort

was taken to ensure the timing of stimulus presentation.

Nevertheless, it appears that phenomena like the AB may be

measured using online using standard web-browser technology

with sufficient power to replicate classic laboratory-based findings.

This result provides further support to the validity of running

experiments online using AMT.

Experiment 7: Masked Priming

Precise control over stimulus duration is especially important in

research involving subliminal perception or visual masking that

requires extremely short presentation durations (e.g., on the order

of 10 ms). These stimulus durations usually require software and

hardware that have been developed and externally tested to ensure

correct timing. In the context of the present studies such tests were

not conducted, nevertheless it would be interesting to know

whether effects that depend on short durations can be replicated in

the absence of such rigorous control (with the tradeoff being fast,

plentiful participant recruitment). One well-replicated masked

priming procedure involves responding to arrow probes (,, or

..) that are primed by briefly presented compatible (e.g., prime:

..; probe ..) or incompatible items (prime: ..; probe ,,)

[37]. In one study, prime duration was manipulated parametri-

cally involving 16, 32, 48, 64, 80, and 96 ms durations (Exp 2

[38]). The notable finding was that compatibility effects were

negative (incompatible RTs faster than compatible RTs) for the

16, 32, and 48 ms durations, but positive (compatible RTs faster

than incompatible RTs) for the longer 64, 80, and 96 durations.

These results are assumed to reflect qualitative differences in

processing of conscious and unconsciously presented stimuli, with

response facilitation driven by conscious access to perceptual

information and response inhibition driven by automatic self-

inhibitory motor control processes. The present experiment

attempted to replicate these findings to determine the viability of

conducting online research that requires extremely short visual

presentations.

Methods
Participants. One HIT with 60 assignments was loaded onto

AMT. Thirty-two unique workers completed all 572 trials.

Demographic information was not collected and workers re-

mained completely anonymous. Workers were paid $0.50 to

complete the task which lasted approximately 15 min.

Apparatus, Stimuli & Design. The experiment was pre-

sented to workers as an HTML webpage with task flow controlled

by JavaScript code running locally in each worker’s web browser.

The visual display was composed of a grey square 150 px in

width and height, placed in the center of the webpage on a black

background. Primes were the stimuli ,, and .. displayed in

black in 20-pt font. The mask was the stimulus ### displayed in

black in 20-pt font. Probes were the same as the primes. All stimuli

were displayed in the center of the grey square.

There were 48 trials per block and 12 total blocks. Each block

employed one six prime durations: 16, 32, 48, 64, 80, and 96 ms.

Block order was randomized for each subject.

Procedure. The same screening procedure and basic web-

page used in the previous experiments was employed here.

Each trial began with a prime presentation followed by a mask

for 100 ms. Next, a blank interval was presented for 50 ms.

Figure 6. Attentional Blink: Mean T2 Proportion Correct as a
function of T1–T2 Lag. Mean T2 (second target) proportion correct as
a function of T1–T2 lag with standard error bars.
doi:10.1371/journal.pone.0057410.g006
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Finally, the probe stimulus appeared for 100 ms and then removed

immediately from the screen. Subjects were instructed to press S

for the ,, stimulus and K for the .. stimulus, and to make their

responses as quickly and accurately as possible.

Results & Discussion
The same outlier analysis conducted on Experiments 1–6

removed 3% of trials from each condition. Mean RTs for each

subject in each condition were submitted to a 2 (compatibility:

compatible vs. incompatible)66 (Prime Duration: 16, 32, 48, 64,

80, & 96 ms) repeated measures ANOVA. Mean RTs for each

condition are displayed in Figure 7.

The main effect of compatibility was significant, F(1,32) = 8.04,

MSE = 1652.37, p,.01, g2
p = .20. Compatible RTs (455 ms) were

faster than incompatible RTs (466 ms). The main effect of prime

duration was significant, F(5,160) = 2.85, MSE = 726.66, p,.017,

g2
p = .08. Mean RTs were 456, 455, 456, 460, 468, and 466 ms,

in the 16, 32, 48, 64, 80, and 96 ms prime duration conditions,

respectively. The compatibility6prime duration interaction was

significant, F(5,160) = 7.10, MSE = 392.48, p,.001, g2
p = .18.

Compatibility effects (i.e., uncued – cued) were not significant

for the 16 (5 ms, F(1,32) = 1.73, p,.198, 32 (3 ms, F,1), 48 (1 ms,

F,1), or 64 ms (6 ms, F,1) prime duration conditions. However,

positive compatibility were significant for the 80 (20 ms,

F(1,32) = 7.07, MSE = 957.73, p,.012, g2
p = .18) and 96 ms

(34 ms, F(1,32) = 17.30, MSE = 1116.53, p,.001, g2
p = .35.)

prime duration conditions. A corresponding analysis of error rates

was also conducted. The pattern of error rates mimicked the

pattern of RTs, but the analysis is not reported for sake of brevity.

The data show a partial replication of Eimer & Schlaghecken

(Exp 2 [38]). The original study observed significant negative

compatibility effects (i.e., incompatible faster than compatible) for

the 16, 32, and 48 ms prime durations. The present replication

showed no significant compatibility effects for these prime

durations, or for the 64 ms prime duration. As well, the trend in

the means was for positive compatibility rather than negative

compatibility effects. The original study observed significant

positive compatibility effects for the 64, 80, and 96 ms prime

duration conditions. The present replication showed significant

positive compatibility effects for the 80 and 96 ms prime duration

conditions. The fact that compatibility effects were not observed

for the 16 to 64 ms prime duration conditions demonstrates

important limitations in using web-browser technology to conduct

experiments that require fine millisecond control over stimulus

presentation. This result is not totally unexpected given the

discussion above. Typically, specialized hardware and careful

control is needed to ensure stimulus presentation times lower than

50 ms. However, this replication attempt shows the likely limits to

behavioral research that can be conducted online using systems

such as AMT. Fortunately, only very specific questions regarding

visual processing and awareness require this type of stimulus

control.

Section 2: Summary
Experiments 5 through 7 examined experiment designs

requiring millisecond control over visual stimulus presentation.

Posner cuing effects, attentional blink, and masked priming effects

that used relatively long (80 ms or longer) stimulus presentation

times were all replicated. Experiment 7 required parametric

manipulation of stimulus duration in 16 ms steps, and compati-

bility effects for prime durations 64 ms and shorter were not

observed, likely indicating constraints for conducting experiments

that require very short stimulus presentation times. As web-

browser technology improves, or if researchers can produce web-

based designs that ensure accurate presentation times for very

short durations, online subject recruitment may become a valuable

resource for such studies in the future.

Section 3: Learning Studies

The experiments considered so far have involved repeated trials

that are independent from one another (i.e., the response on one

trial is not related the response to the previous one). In addition, in

most cases, the instructions were relatively obvious (e.g., in the

Stroop experiment the instructions are simply described by the

prompt on every trial). However, other experiments of interest to

psychologist require more complex instructions and non-indepen-

dent trials, as in learning tasks. In this section, we turn our effort to

replicating classic learning studies using AMT. Note that in many

learning tasks, it is critical that participants understand key

concepts (such as the whether the task is changing over time) as

well as integrate experience across a series of trials. To foreshadow,

our initial investigations into these types of experiments was quite

different from the result of the previous section (we failed to

replicate in some cases). However, in a series of follow-up studies

we explore a number of alternative factors that may have

influenced our results.

Figure 7. Masked Priming: Compatible and Incompatible Mean RTs and Error Rates Across Prime Durations. Mean RTs and error rates
for compatible and incompatible masked prime trials as a function of prime duration with standard error bars.
doi:10.1371/journal.pone.0057410.g007
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Experiment 8: Category Learning

In our first learning experiment with AMT we attempted to

replicate Shepard, Hovland, and Jenkins’ [39] classic study on

concept learning. This is a highly influential experiment that has

been replicated many times in different laboratories using slightly

different materials [40,41,42]. As a summary, Shepard et al. had

participants learn one of six different categorical groupings of a set

of eight geometric objects. Each of the six groupings varied in

difficulty in a way related to the complexity of the criteria needed

to correctly partition the items. Interestingly, differences in

difficulty among the problems persist despite the fact that, in

theory, people could simply memorize the category membership of

each of the eight items. This is often taken to imply people are

forming more abstract, structured conceptions of the regularity

governing the category distinction (e.g., by inferring an explicit

rule which determines category membership).

For example, in the first problem (known as the Type I problem)

a natural solution is to form a rule along a single stimulus

dimension (e.g., ‘‘If the object is blue then respond Category A,

otherwise respond Category B.’’). The Type I problem is usually

fairly easy to learn across a sequence of trials, while other problems

are more difficult. For example, the Type VI problem is a

complicated three-way XOR between the stimulus dimensions

and might be best learned by memorizing the category member-

ship of each item. A full description of the abstract structure of the

Shepard et al. learning problems is shown in Table 1.

In general, previous research has shown that the Type I

problem is reliably learned more easily across trials than is the

Type II problem. In turn, Types III, IV, and V are learned more

slowly than Type II (within problems III–V, learning rates appear

mostly similar). Finally, Type VI is typically the most difficult

pattern to learn. The relative rate of learning for these six

problems has provided an important constraint on theories of

human concept and category learning. For example, most

computational models of categorization must account for the

relative difficulty of these problems in order to be viewed as a

serious theoretical account. In addition, the quantitative (rather

than qualitative) shape of the learning curves has been used to test

and differentiate models [43,44]. As a result, this study is a natural

candidate for replication using AMT. One practical challenge with

conducting this study is that there are six separate experimental

conditions and usually each subject should only contribute data to

one condition (to avoid possible carry-over effects). In light of this,

our goal in Experiment 8 was to see if we could replicate this

finding using participants recruited over the Internet.

Methods
Participants. Two hundred and thirty-four anonymous on-

line participants volunteered (N = 38 in each of the six problems),

and each received $1.00 via AMT’s built-in payment system. In

addition, one in ten participants who completed the task were

randomly selected for a bonus raffle of $10. This incentive was

included to encourage people to finish the task even if they found it

difficult, a helpful precaution against people withdrawing from the

study in the more challenging problems (e.g., Type VI). An

additional 56 participants initiated the experiment electronically,

but withdrew before the end for unknown reasons. The data from

these participants was not further analyzed. Finally, seven

individuals indicated they used pen and paper to solve the task

in a post-experiment questionnaire and were excluded (although

these participants still received payment). Participants electroni-

cally signed consent forms and were debriefed after the

experiment. The NYU Institutional Review Board approved the

study design.

We conducted our experiment between 1:30 p.m. EST

February 24th, 2012 and 6 p.m. EST February 28th, 2012 (we

expect this information may be useful for researchers to know if

the demographics of AMT change over time). Data collection was

generally paused each evening at around 9 p.m. EST and started

again the following morning. A restriction was put in place that

participants were located with the United States and had at 95%

acceptance rate for HITs. The purpose of this was to increase the

probability that the participants were native English speakers who

could fully understand the instructions and so we could keep data

collection during relatively normal working hours. In addition, our

experiment code checked the worker ID and made sure that each

unique account could only participate in the task once. People

could evade this restriction if they had multiple Amazon accounts,

but doing so would be a violation of Amazon’s Terms of Use

policy.

Design. Each participant was randomly assigned to complete

one of the six learning problems defined by Shepard et al. [39] and

shown in Table 1. The mapping between the stimuli and the

abstract structure shown in Table 1 was randomly counterbal-

anced across participants.

Apparatus & Stimuli. The experiment was served to

workers as an HTML webpage with task flow controlled by

JavaScript code running locally in each worker’s web browser.

Our software for running AMT experiments is provided at http://

github.com/NYUCCL/PsiTurk. Due to an incompatibility with

Microsoft Internet Explorer (IE)’s rendering engine, participants

using IE were denied access to the experiment and asked to

download an alternate (free) browser such as Google Chrome.

The stimuli were simple square objects that varied in the border

color (yellow or white), fill color (blue or purple), texture (smooth

or rough), and stripe (present or absent). The stimuli we used were

developed by Love [45] who normed the constituent dimensions

for roughly equal psychological salience using college-aged

undergraduates. For each individual, only three of the four

dimensions were relevant of the study (the three dimensions in

Table 1) and the fourth was held at a fixed value.

Procedure. Our replication, although presented in AMT,

remained procedurally similar to a highly cited laboratory

replication of the Shepard et al. [39] results by Nosofsky et al.

[40]. On each trial of the task, one of the eight objects was

presented in the middle of the browser window. The participant

indicated if the item belonged to category A or B by clicking the

appropriate button. Feedback was then presented for 500 ms,

which indicated if the response was correct or incorrect.

Trials were organized into blocks of 16 trials. In the rest period

between blocks, participants were given information about their

performance in the previous block and about how many more

blocks remained. The experiment lasted until the participant

responded correctly for two blocks in a row (32 trials) or until they

completed 15 blocks. Participants were told that the experiment

could last as long as 15 blocks, but that they could end early if they

correctly learned the grouping quickly. Participants were asked not

to use pen and paper.

After completing the task, participants filled out a brief

questionnaire that asked if they used any external learning aids

(e.g. pencil and paper), if they used any particular strategy, how

much they enjoyed the task, and how difficult they thought it was.

Results & Discussion
Figure 8 shows the probability of making a classification error as

a function of training block for each of the six problem types. If a
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participant reached the performance criterion (one block 100%

correct) before the 15th block, we assumed they would continue to

respond perfectly for all remaining blocks. Figure 8 is split in two

panels. The laboratory data collected by Nosofsky et al. [40]

appears in the top panel and our AMT data appear in the bottom

panel.

There are several patterns of interest. First, like participants in

Nosofsky et al. [40], participants in the AMT experiment learn

over trials and reduce the error rate. In addition, the Type I

problem was learned very quickly (within the first two or three

blocks). In contrast, the error rate for the Type II problem is

somewhat higher (and more similar to Types III, IV, and V).

At the same time, in all conditions besides Type I, our

participants performed significantly worse than Nosofsky et al.’s

[40] participants. For example, in all problems except for Type VI,

the probability of error in Nosofsky’s study fell below .1 by block

15. In contrast, our error rates asymptote near .2. One hypothesis

is that participants on AMT generally learn more slowly, but this

would not explain why Type I was learned at a similar rate to

Nosofsky (the probability of error drops below .1 by the second

block of trials).

This rather slower learning rate for the more complex problems

is also reflected in Figure 9, which compares the average number

of blocks taken to reach criterion both participants in our data and

for Nosofsky et al. [40]. In almost every problem, participants on

AMT took nearly double the number of blocks compared to

Nosofsky et al.’s laboratory study. Closer inspection of the data

showed that this was due to a rather large proportion of

Figure 8. Cognitive Learning: A comparison between the learning curves reported in Nosfosky et al. (1994) data and the AMT
replication data in Experiment 8. The probability of classification error as a function of training block. The top panel shows the learning curves
estimated by Nosfosky et al. [38] using 120 participants (40 per learning problem) who each performed two randomly selected problems. The right
panel shows our AMT data with 228 participants, each who performed only one problem (38 per condition). We ended the experiment after 15
blocks, although Nosofsky et al. stopped after 25. Thus, the Nosofsky et al. data have been truncated to facilitate visual comparison.
doi:10.1371/journal.pone.0057410.g008
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participants who never mastered the problems at all (taking all 15

blocks). However, this view of the data suggests that Type II was at

least marginally easier than Types III–V.

Interestingly, the difficulty of the task (according to Shepard et

al. [39] and Nosofsky et al. [40]) did not have a strong impact on

people deciding to drop out of the task. To assess this we counted

the number of participants who started the experiment but didn’t

successfully finish as a function of condition. There were four,

eight, three, seven, ten, and eight dropouts for problem Types I, II,

III, IV, V, and VI, respectively. Thus, the dropout rate does not

seem to be systematically related to the problem difficulty (e.g., the

smallest number of dropouts was in the Type III problem which,

according to the error analyses, was somewhat difficult for

participants).

It is also worth noting that we did not attempt any additional

post hoc ‘‘clean up’’ of the data (e.g., excluding people who took a

long time or who pressed the same key for many trials in a row).

While such exclusion may be warranted in certain cases, we didn’t

have clear a priori hypotheses about which kinds of exclusions

would be appropriate for this data. However, given the large

percentage of subjects who failed to master the problems within 15

blocks, it is unlikely that there is a simple exclusion criterion that

would make our data align well with the Nosofsky et al. [40]

replication (without directly excluding people who did not learn).

Experiment 9: Category Learning and the Effect of
Payment Magnitude

The results of Experiment 8 were somewhat mixed. Participants

did show learning across trials (e.g., clearly in the Type I problem

and as reflected in the overall error rates). However, at least when

compared to Nosofsky et al. [40] learning performance in our

replication was considerable lower. These results also differ from

studies 1–6 which showed relatively similar patterns of online and

laboratory data.

One possibility is that if we better incentivized participants’

performance, we could get better data. In other words, is the

quality of AMT data basically as good as you are willing to pay? As

noted by Gosling et al. [3], some AMT workers seem to participate

mainly for personal enjoyment, and payment isn’t an important

issue for these individuals. For example, in their study, they found

that a large number of workers would complete a survey for $0.01

(the minimum possible payment).

However, this does not apply universally. Anecdotally, we

attempted to run the Shepard et al. [39] study reported above but

only offered $0.25 as payment (and no lottery or bonus). In that

case we recruited only 1 subject in 12 hours (2 others dropped out

after the first block of the task). Thus, workers are influenced to

participate by the magnitude of payment and their estimation of

the difficulty or length of the task. However, this sensitivity to the

possible payment might also influence task performance in

theoretically significant ways.

In a second study, we systematically explored how our

replication results might depend on how much money the AMT

workers are offered. This issue is rarely examined systematically in

the laboratory but could have important implications in online

data where participants decision to participate may be more

strongly influenced by economic concerns (e.g., there are many

other tasks available on AMT and the switch costs are low, so the

opportunity costs may be more apparent).

Specifically, we repeated the above study with two different

incentive structures. We felt our initial payment scheme described

above was roughly in line with what we would pay a laboratory

subject for a short 15–20 minute task ($1.50 on average). To

explore the space of payment options, we created two additional

conditions, a low-incentive group that was paid $0.75 and not

offered a bonus. A second high-incentive group was offered a

guaranteed $2 and a bonus of up to $2.50 based on task

performance.

Rather than test all six Shepard et al. [39] problem sets we

focused this analysis on the Type II and IV problems, which are

often considered to be the two most theoretically significant

problems. By comparing the results of this replication with our

previous experiment we hoped we could obtain information about

the relative effects of payment on the relationship between our

online replication and related laboratory studies. In addition, we

collected demographic information about participants in this

study.

Methods
Participants. Eighty-two anonymous online participants

volunteered and were evenly divided between either a low-

incentive or high-incentive condition. Within each condition,

participants were randomly assigned to either the Type II or Type

IV problems (N = 20 or 21 in each condition). In the low-incentive

condition each participant received $0.75 via AMT’s built-in

payment system. There was no bonus or lottery offered for these

participants. In the high-incentive condition, participants in were

paid a base amount of $2 for completing the experiment and a

bonus of up to $2.50. The bonus was calculated as follows: at the

end of the experiment, 10 random trials were selected from the

participant’s data file and each trial where the participant

provided a correct response increased the bonus by $0.25. If the

participant reached criterion (2 blocks with 100% correct

responses) we coded all remaining trials as correct. This placed a

relatively stronger financial incentive on quickly mastering the

problem compared to either the low-incentive condition or the

previous experiment.

An additional twenty participants initiated the experiment

electronically, but withdrew before the end for unknown reasons

or self-reported using pen and paper to complete the task. As

before, a restriction was put in place that participants were located

with the United States and had at 95% acceptance rate for

previous HITs.

We collected data for the low-incentive condition during a 25 hr

period beginning March 9th, 2012 at 5 p.m. EST and ending

March 10th at 6 p.m. EST. Data collection was stopped at 9 p.m.

Figure 9. Cognitive Learning: The average number of block to
criterion for each problem, an index of problem difficulty. The
average number of blocks it took participants to reach criterion (2
blocks of 16 trials in a row with no mistakes) in each problem. The white
bars show the estimated average number of blocks to criterion
reported by Nosofsky et al. [38].
doi:10.1371/journal.pone.0057410.g009
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EST each evening and began again after 10 a.m. EST. We

collected data for the high-incentive condition during a 2 hr

period beginning March 20th, 2012 at 3:30 p.m. EST and ending

5:30 p.m. EST.

Design. Each participant was randomly assigned to complete

one of the six learning problems defined by Shepard et al. [39] and

shown in Table 1. The stimuli were simple square objects that

varied in the border color (yellow or white), main color (blue or

purple), texture (smooth or rough), and stripe (present or absent).

As before, the stimuli were developed by Love [45] who normed

the constituent dimensions for roughly equal psychological

salience. The mapping between the stimuli and the abstract

structure shown in Figure 2 was randomly counterbalanced across

participants. Only three of the four dimensions were relevant of

the study (i.e., the three dimensions in Table 1) and the fourth was

held at a fixed value for all eight stimuli.

Apparatus & Stimuli. The apparatus and stimuli were

identical to Experiment 8.

Procedure. The design was mostly identical to the previous

study except participants only completed either the Type II or

Type IV problem. The procedure was mostly identical to

Experiment 8; the only difference was the incentive (high or low).

Results & Discussion
Figure 10 compares the learning curves for both the Type II

and Type IV problems across three incentive conditions (the

medium incentive data are the same as above). The incentive

structure of the task had little impact on overall learning rates in

the task and does not fundamentally change the impression that

the Type II and Type IV problems were learned at a roughly

similar rate. There were no significant differences between the

incentive conditions in overall error rate for Types II or IV. This

result aligns well with Mason and Watts [7], who report that the

magnitude of payment does not have a strong effect on the quality

of data obtained from online, crowd-sourced systems.

However, the incentive variable did influence the rate of signups

(40 subjects were collected in 2 hours in the high incentive

condition while it took roughly two days to collect the same

amount of data in the low incentive condition). In addition, it

strongly influenced the dropout rate. In the high incentive

condition, only five participants started the task without finishing

(two in Type II and three in Type IV), giving a dropout rate

overall of 11%. In contrast, 13 participants in the low incentive

condition started but did not finish the task (six in Type II and

seven in Type IV), for an overall dropout rate of ,25%. Again,

this result is largely consonant with the conclusions of Mason and

Watts [7] in a different task.

Experiment 10: An Instructional Manipulation
Check

Our results so far are interesting, but also suggest caution in

using AMT data in cognitive science research. Despite some hints

of the classic learning pattern in our data, there were fairly large

discrepancies between our study and laboratory collected data.

This mostly manifested in significantly worse learning for the more

difficult conditions (problems II–VI, relative to the simple one-

dimensional rule used in problem I). One concern is that the

variable testing environment online contributes to distraction or

lack of participant motivation that might negatively impact

performance in more challenging cognitive tasks. This would

tend to reduce the utility of systems like AMT for research on these

topics.

However, rather than give up, we doubled down in our efforts.

First, we made some changes to our experiment to be more in line

with Nosofsky et al.’s original replication [40]. In particular, we

replaced the stimuli developed by Love [44] with the simple

geometric figures used by Nosofsky et al. and Shepard et al [39].

Pilot data suggested that the stimulus differences were not the

main factor influencing performance but to ensure more

comparable results we thought it would be prudent to minimize

all differences.

Second, we became concerned that some participants may not

have completely understood the instructions; for example, some

responses to the post-experiment questionnaire indicated that

people believed the rule was changing from one block to the next.

It seemed likely that a failure to fully understand the instructions

would negatively impact performance, particularly on the more

difficult problems.

To address this issue, we incorporated an instructional

manipulation check that has been shown to account for

unexplained variance in behavioral experiments [46]. This

Figure 10. Cognitive Learning: The learning curves for Shepard et al. Type II and IV problems based on task incentives. The
probability of classification error as a function of training block, learning problem and incentive for Experiment 9. The incentive structure had little
impact on performance within each problem.
doi:10.1371/journal.pone.0057410.g010
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straightforward technique requires the participant to answer non-

trivial comprehension questions about the instructions of the

experiment before participating. While Oppenheimer et al. [46]

introduced somewhat insidious ‘‘gotcha’’ questions into their

instructions, we simply presented participants with a questionnaire

at the end of the instruction phase which tested knowledge of the

basic task and study goals. Correct answers to the questionnaire

required a complete comprehension of the goals of the experiment

and addressed possible misconceptions (e.g., ‘‘Will the rule change

on each block?’’, ‘‘is it possible to get 100% correct?’’, ‘‘should you

use pen and paper to solve the task?’’). If a participant incorrectly

answered any of the questions, they were asked politely to read the

instruction again. This process repeated in a loop until the

participant was able to answer all of the comprehension questions

correctly.

Methods
Participants. Two hundred anonymous online participants

volunteered and were each randomly assigned to a Type I, II, IV,

or VI problem (N = 50 in each). Participants were offered $1 to

complete the task along with a one in ten chance of winning a $10

bonus (only available if they completed the task). This matches the

medium incentive condition used in Experiment 8.

An additional 33 participants initiated the experiment electron-

ically, but withdrew before the end for unknown reasons or self-

reported using pen and paper to complete the task. As before, a

restriction was put in place that participants were located with the

United States and had at 95% acceptance rate for previous HITs.

We collected data beginning March 29th, 2012 at 11:30 a.m. EST

and ending April 2nd at 5 p.m. EST. Data collection was stopped

around 9 p.m. EST each evening and began again after 10 a.m.

EST.

Apparatus, Stimuli, Design & Procedure. The design was

identical to the previous study except participants only completed

one of the Type I, II, IV, or VI problems. The only major change

was to the stimuli (made to match Nosofsky et al. [40]) and the

instructions (detailed above). The procedure was identical to

before.

Results & Discussion
Figure 11 (top panel) compares the learning curves for Nosofsky

et al. [40] and Experiment 10. The most striking pattern is the

closer correspondence between our AMT data and the laboratory-

collected data for Types I and IV. These data probably fall within

the acceptable margin of error across independent replications of

the laboratory study. As an illustration, the bottom panel

compares our AMT data to a separate laboratory-based replica-

tion by Lewandowsky [42]. Given the intrinsic variability across

replications, this suggests the AMT data do a fairly good job of

replicating the laboratory-based results. In contrast, the Type VI

problem appears more difficult for participants on AMT

compared to in the lab. However, at least compared to our results

in Experiment 1, the relative ordering of the problems is much

more pronounced (i.e., Type I is easier than Type IV which is

easier than Type VI).

Despite generally increased alignment between the laboratory

data and AMT data, anomalies remain. In particular, the Type II

problem seems systematically more difficult for participants in our

online sample than in Nosofsky et al.’s [40] laboratory study (e.g.,

the largest discrepancy between the same colored lines is for the

solid red line and dashed red line reflecting the Type II problem).

The finding that Type II is learned roughly at the same rate as

Type IV in our online sample is interesting. However, other

measures of learning suggested at least a marginal Type II

advantage. For example, 100% of participants in the Type I

problem reached the learning criterion within the 10 training

blocks (2 blocks in a row with 100% correct responses). In

comparison, 73.1% reached criterion in the type II problem.

However, only 56.4% reach criterion in the Type IV problem and

44.8% reach criterion in the Type VI problem. Interestingly, our

finding of similar learning curves for the Type II and IV problems

has some precedent in the laboratory literature. For example, as

visible in the bottom panel of Figure 11, Lewandowksy [42] found

that the Type II problem was learned at roughly the same rate that

the Type IV problem. A similar result was reported by Love (2002)

[45] who found only a marginal Type II advantage compared to

Figure 11. Cognitive Learning: The learning curves for Shepard
et al. problems I, II, IV, and VI in Experiment 10. The top panel
compared the results of Nosfosky et al. [38] to the results of Experiment
10. The bottom compares the results of Lewandowsky [40] to the
results of Experiment 10 giving two different views of the relationship
between the online and laboratory based data. Overall, the Type II
problem seems more difficult than in previous report (as is the Type VI).
However, in general, the instruction manipulation increased the
congruence between the online and laboratory data.
doi:10.1371/journal.pone.0057410.g011
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the Type IV problem in a related design. In a series of

experiments, Kurtz et al. [47] have argued that the Type II

advantage can be explained by the extent to which instructions

emphasize verbal rules.

Section 3: Summary
Overall, our experiments with AMT seem promising, but also

raise some interesting issues.

First, it was amazing how much data we could collect in a short

period of time. Performing a full-sized replication of the Nosofsky

et al. [40] data set in under 96 hours is revolutionary. This alone

speaks volumes about the potential of services like AMT for

accelerating behavioral research.

Second, it is notable that participants did learn in all conditions

(error rate dropped from the beginning to the end of the study in

all conditions). This fact was not necessarily a given since people

could have chosen to respond randomly. Manual inspection of our

data suggests this almost never happened.

Third, many participants were willing to take part in the 15–

30 minute study even when offered $0.75 in the low incentive

condition. Given that this is about 2–3 times longer than typical

HITs on the system suggest there is a reasonable market for

recruiting participants. In our high incentive condition, we were

able to run as many as 40 participants in 2 hours.

Finally, we replicated the key finding of Shepard et al. [39] and

Nosofsky et al. [40] (Type I was easier than Types III–V which are

easier than Type VI). Our data were a little less clear than the

previously published laboratory collected studies. In general, Type

II seemed slightly more difficult than previously reported (at least

in our learning curve analysis). We are not sure what to make of

this difference, except to point out that a couple recent laboratory

studies report a similar pattern [45,42]. In addition, online

participants generally learned more slowly (this was especially true

in Experiments 1 and 2 but also showed up in the Type VI

condition in Experiment 3). It may be that the slower learning

relates to the more diverse participant sample than is typical in

laboratory studies (e.g., we did find a slightly negative correlation

between performance on the Type II problem and self-reported

age).

One of our more practical findings was that building in checks

for understanding the instructions is critical for ensuring high

quality data. After incorporating those changes, our data began

looking more like a publication-quality replication study.

General Discussion

A quick survey of the cognitive science literature suggests that

Internet-based studies have not yet made it fully into mainstream

cognitive journals. Based on our findings, we recommend that

reviewers and editors should consider accepting behavioral

experiments done on AMT as a valid methodology (applying as

much scrutiny as they would apply to any behavioral paradigm).

Even for extended experiments requiring problem solving and

learning, and precise millisecond control for response collection

and stimulus presentation, the data seem mostly in line with a

laboratory results so long as the experiment methods were solid. At

the same time, our cognitive learning experiment raise important

concerns about running online studies and our visual priming

studies show the limitation in browser-based display technologies.

Despite these concerns, overall, we believe AMT is a

revolutionary tool for conducting experiments. It offers the ability

to run experiments with large numbers of subjects in a matter of

hours. This has the potential to transform behavioral research.

Additionally, AMT provides an opportunity to reach a more

representative population that varies widely in age, education, and

ethnicity and geographic location.

Most importantly, AMT and Internet-based research can lead

the way in promoting transparency and reproducibility in

cognitive research. Psychologists are under increasing criticism

for undisclosed flexibility in data collection and statistical analysis

[48]. These concerns are strong enough to have prompted an

ongoing, large-scale, open-collaboration effort to replicate the

findings from the 2008 issues of Journal of Personality and Social

Psychology, Psychological Science, and Journal of Experimental

Psychology: Learning, Memory, and Cognition [49]. On this note,

it is heartening that the experiments reported here mostly

replicated with ease. But still more important is the ease with

which it will be possible to replicate new experiments. What

Internet-based research lacks in environmental control it makes up

in the standardization and control over experiment procedures.

Because experiments are program scripts that run on web

browsers, access to the code alone is adequate to completely

replicate the experiment. This could lead to an era of exhaustive

transparency, that is at least if researchers are encouraged and

agree to publish their data collection scripts along with their

manuscripts. Many journals offer supplemental materials or allow

links to supporting online materials and this provides one

opportunity to share the scripts used to run their experiments.

The code for the reported studies will be made available at the

author’s websites.

Suggestions and Advice
To conclude, we would like to offer practical advice based on

our experience collecting this data set. On the ethical side, we echo

the point made by Mason and Suri [2] that researchers should pay

AMT users something close to what is offered to someone to

perform the task in the lab. Many companies offer simple HITs on

AMT for as little as $.10, but such rates are out of line with what

subjects in the lab are offered. While our analysis suggests that

lower pay doesn’t necessarily affect the quality of the data, we have

found that we can recruit participant faster and have fewer

dropouts by making the study financially appealing.

Second, experiments that are at least somewhat fun and

engaging are likely to be better received. A task involving 5000

discrimination judgments for simple lines or sine-wave gratings will

have little appeal to workers, potentially leading to increased

dropouts and lower quality of data overall. Studies on AMT

compete against all the other interesting things to do on the

Internet (e.g., YouTube). We received feedback from many of the

participants in Experiments 8–10 who said they found the rule-

discovery task to be fun and interesting (although to be fair, others

hated it).

We considered various ways to exclude suspicious or odd

behavior (e.g., pressing the same key many times in a row or long

response times) but ultimately chose not to report these analyses.

The problem was that our exclusion criteria were arbitrary.

Generally, we do not advocate excluding participants except under

the most extremely obvious situations of abuse (e.g., pushing the

same button the entire time). As with all empirical studies,

restrictions should be decided before data collection and clearly

reported in papers to avoid excess experimenter degrees of

freedom [48]. Additionally, reporting the time of day and date of

data collection may be important as the AMT population may

evolve over time.

Most importantly, we found that testing participants’ compre-

hension of the instructions was critical. Prior to including such

checks, our data in Experiments 8 and 9 were much noisier. In

fact, the instruction check had a considerably more robust effect
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on the quality of our data than did increasing the payment. There

are various means by which experiments can be designed to keep

participants abreast of instructions during the task, e.g., by giving

accuracy as feedback following each trial, by giving prompts to

encourage speeded responding when participants do not meet

deadlines, or by giving summary assessments of performance after

blocks of trials. Such feedback allows participants to make

adjustments to bring performance in-line with intended instruc-

tions, and may provide extra motivation to improve performance.

In retrospect, these points are intuitive, but they were a lesson

worth having sooner rather than later.

Finally, it is important to monitor and record the rate at which

people begin an experiment but do not finish. This is typically not

a problem in laboratory studies since the social pressure of getting

up a walking out of the lab is much higher than it is online.

However, dropout rates can interact in complex ways with

dependent measures such as accuracy (low performing individuals

may be more likely to drop out). We recommend that, perhaps

unlike a typical laboratory study, all Internet experiments report

dropout rates as a function of condition.

Dropout rate may also depend on task length, financial

incentive, and other motivations to complete the task. Our studies

validated a range of task lengths from 5–30 min with a range of

relatively low financial incentives. Across tasks, dropout rates were

not prohibitively high, and we expect that these rates would

naturally change to the extent that subjects are given incentive to

complete the task at hand. We did not conduct lengthier

experiments (e.g., more than one hour long, or multi-day

experiments); however, our experience leads us to believe that

these types of experiments could be conducted by increasing pay

and restricting the experiment to highly motivated and accom-

plished workers.

In conclusion, AMT is a promising development for experi-

mental cognitive science research. On balance, our investigations

suggest that the data quality is reasonably high and compares well

to laboratory studies. However, important caveats remain.

Hopefully, the quality of the data will continue to remain high

as additional researchers start to utilize this resource. If we as

scientists respect the participants and contribute to a positive

experience on AMT it could turn into an invaluable tool for

accelerating empirical research.

Author Contributions

Conceived and designed the experiments: MC JM TG. Performed the

experiments: MC JM TG. Analyzed the data: MC JM TG. Contributed

reagents/materials/analysis tools: MC JM TG. Wrote the paper: MC JM

TG.

References

1. Pontin J (2007) Artificial Intelligence, With Help From the Humans. The New

York Times. Available: http://www.nytimes.com/2007/03/25/business/

yourmoney/25Stream.html?_r = 0. Accessed 2012 Nov 6.

2. Mason W, Suri S (2012) Conducting behavioral research on Amazon’s

Mechanical Turk. Behav Res Methods 44: 1–23.

3. Gosling SD, Vazire S, Srivastava S, John OP (2004) Should we trust web-based

studies? A comparative analysis of six preconceptions about Internet question-

naires. Am Psychol 59: 93–104.

4. Buhrmester M, Kwang T, Gosling SD (2011) Amazon’s Mechanical Turk: A

new source of inexpensive, yet high-quality, data? Perspect Psychol Sci 6: 3–5.

5. Amir O, Rand DG, Gal Y (2012) Economic games on the Internet: the effect of

$1 stakes. PLoS ONE 7: 2.

6. Paolacci G, Chandler J, Ipeirotis PG (2010) Running experiments on Amazon

Mechanical Turk. Judgm Decis Mak 5: 411–419.

7. Mason W, Watts DJ (2009) Financial incentives and the performance of crowds.

In Proceedings of the ACM SIGKDD Workshop on Human Computation. New

York: ACM pp. 77–85.

8. Suri S, Watts DJ (2011) Cooperation and contagion in Web-based, networked

public goods experiments. PLoS One 6: e16836.

9. Jasmin K, Casasanto D (2012) The QWERTY Effect: How typing shapes the

meanings of words. Psychon Bull Rev 19: 499–504.

10. Schnoebelen T, Kuperman V (2010) Using Amazon mechanical turk for

linguistic research. Psihologija 43: 441–464.

11. Germine L, Nakayama K, Duchaine BC, Chabris CF, Chatterjee G, et al. (2012)

Is the Web as good as the lab? Comparable performance from Web and lab in

cognitive/perceptual experiments. Psychon Bull Rev (online publication).

12. Reips U (2002) Standards for Internet-Based Experimenting. Exp Psychol 49:

243–256.

13. Ipeirotis PG (2010) Demographics of Mechanical Turk (Tech. Rep. No. Ce-

DER-10-01). New York: New York University. Available: http://hdl.handle.

net/2451/29585. Accessed 2012 Jun 1.

14. Ross J, Irani L, Silberman MS, Zaldivar A, Tomlinson B (2010) Who are the

crowdworkers? Shifting demographics in Amazon Mechanical Turk. In:

Edwards K, Rodden T, editors. Proceedings of the ACM Conference on

Human Factors in Computing Systems: New York ACM. pp. 2863–2872.

15. Neath I, Earle A, Hallett D, Surprenant AM (2011) Response time accuracy in

Apply Macintosh computers. Behav Res Methods 43: 353–362.

16. Ulrich R, Giray M (1989) Time resolution of clocks: Effects on reaction time

measurement–Good news for bad clocks. Br J Math Stat Psychol 42: 1–12.

17. Reimers S, Stewart N (2007) Adobe Flash as a medium for online

experimentation: A test of reaction time measurement capabilities. Behav Res

Methods 39: 365–370.

18. Reimers S, Maylor EA (2005) Task switching across the life span: Effects of Age

on General and Specific Costs. Dev Psychol 41: 661–671.

19. Stroop JR (1935). Studies of interference in serial verbal reactions. J Exp Psychol

18: 643–662.

20. MacLeod CM (1991) Half a century of research on the Stroop effect: An

integrative review. Psychol Bull 109: 163–203.

21. Logan GD, Zbrodoff JN (1998) Stroop-type interference: Congruity effects in

color naming with typewritten responses. J Exp Psychol Hum Percept Perform

24: 978–992.

22. Van Selst M, Jolicoeur P (1994) A solution to the effect of sample size on outlier

elimination. Q J Exp Psychol 47a: 631–650.

23. Jersild AT (1927) Mental set and shift. Archives of Psychology 14: (Whole

No. 89).

24. Kiesel A, Steinhauser M, Wendt M, Falkenstein M, Jost K, et al. (2010) Control

and interference in task switching–A review. Psychol Bull 136: 849–874.

25. Monsell S (2003). Task switching. Trends Cogn Sci 7: 134–140.

26. Eriksen BA, Eriksen CW (1974) Effects of noise letters upon the identification of

a target letter in a non search task. Percept Psychophys 16: 143–149.

27. Eriksen CW (1995) The flankers task and response competition: A useful tool for

investigating a variety of cognitive problems. Vis Cogn 2: 101–118.

28. Wendt M. Kiesel A (2011) Conflict adaptation in time: Foreperiods as contextual

cues for attentional adjustment. Psychon Bull Rev 18: 910–916.

29. Craft JL, Simon JR (1970) Processing symbolic information from a visual

display: Interference from an irrelevant directional cue. J Exp Psychol 83: 415–

420.

30. Lu C, Proctor RW (1995). The influence of irrelevant location information on

performance: A review of the Simon and spatial Stroop effects. Psychon Bull Rev

2: 174–207.

31. Proctor RW, Lu C (1999). Processing irrelevant location information: Practice

and transfer effects in choice-reaction time tasks. Mem Cognit 27: 63–77.

32. Posner MI, Cohen Y (1984) Components of visual orienting. In: Bouma H,

Bouwhis D, editors. Attention and Performance Vol. X: Erlbaum. pp. 531–556.

33. Klein RM (2000) Inhibition of return. Trends Cogn Sci 4: 138–146.
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